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Abstract. We present a certified SMT QFBV solver CoqQFBV built
from a verified bit blasting algorithm, Kissat, and the verified SAT cer-
tificate checker GratChk in this paper. Our verified bit blasting algo-
rithm supports the full QFBV logic of SMT-LIB; it is specified and for-
mally verified in the proof assistant Coq. We compare CoqQFBV with
CVC4, Bitwuzla, and Boolector on benchmarks from the QFBV di-
vision of the single query track in the 2020 SMT Competition, and real-
world cryptographic program verification problems. CoqQFBV surpris-
ingly solves more program verification problems with certification than
the 2020 SMT QFBV division winner Bitwuzla without certification.

1 Introduction

Satisfiability Modulo Theories (SMT) solvers for the Quantifier-Free Bit-Vector
(QFBV) logic have been used to verify programs with bit-level accuracy [9,10].
In such applications, a program verification problem is reformulated as an SMT
QFBV query. An SMT QFBV solver is then invoked to compute a query
result. The query result in turn decides the answer to the program verification
problem. For cryptographic assembly programs, a missing carry or borrow flag
will result in incorrect computation. Bit-accurate verification is thus necessary
for cryptographic programs. SMT QFBV solvers in fact have been employed to
verify such programs [8,25]. These solvers nonetheless are very complex programs
with possibly unknown bugs [7,18]. Since bugs in SMT QFBV solvers may
induce incorrect query results, program verification cannot be taken without a
grain of salt when SMT QFBV solvers are employed.

In order to check SMT QFBV query results independently, SMT QFBV
solvers can generate certificates to validate their answers. In the LFSC certifi-
cates [23,14], for instance, an SMT QFBV query result is certified by correct bit
blasting and Boolean Satisfiability (SAT) solving. Such certificates demonstrate
that the SMT QFBV query is reduced to a Boolean SAT query correctly and
the corresponding SAT query is solved correctly. Although one can certify SAT
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query results with certificates from SAT solvers [24], it is not always easy to cer-
tify correct bit blasting due to complex arithmetic operations in SMT QFBV
queries. Developing correct and efficient checkers for SMT QFBV certificates
can be very challenging. Indeed, an LFSC certificate checker based on the proof
assistant Coq has been developed to improve confidence [12]. Yet the Coq-
based certificate checker does not fully support arithmetic operations and thus
cannot certify results of SMT QFBV queries with complicated arithmetic op-
erations. Consequently, the correctness of cryptographic programs still relies on
the correctness of SMT QFBV solvers or their unverified certificate checkers.

In this paper, we take a more direct approach to ensure the correctness of
SMT QFBV query results. Instead of certifying correct bit blasting for every
SMT QFBV query, we specify a bit blasting algorithm and prove its correct-
ness in the proof assistant Coq. In order to formalize the correctness of our bit
blasting algorithm, we develop a formal bit-vector theory in Coq. Naturally,
the formal theory has to support all arithmetic functions (addition, subtraction,
multiplication, division, and remainder) for both signed and unsigned represen-
tations as needed in SMT-LIB [3]. Based on our new bit-vector theory, we give
a formal semantics for SMT QFBV queries in Coq. Our semantics follows the
SMT-LIB semantics carefully. Particularly, division and remainder are total
arithmetic operations even when the divisor is zero. Using our Coq bit-vector
theory and semantics, we prove that our bit blasting algorithm always returns a
corresponding Boolean formula correctly on any SMT QFBV query. Since our
algorithm has been formally verified, bit blasting is always correct and need not
be certified. Through the OCaml program extracted from our verified bit blast-
ing algorithm, a corresponding SAT query is obtained for each SMT QFBV
query and sent to a SAT solver. A SAT certificate checker suffices to validate
SAT query results and hence the correctness of answers to SMTQFBV queries.
Since neither complicated SMT QFBV solvers nor their certificate checkers are
trusted, our work can improve the confidence of SMT QFBV query results.

To our knowledge, our bit-vector theory is the first Coq formalization de-
signed for bit blasting queries from the QFBV logic of SMT-LIB. Our seman-
tics is the first Coq formalization for full SMTQFBV queries. We are not aware
of any verified bit blasting algorithm or program for full SMT QFBV queries
of SMT-LIB at the time of writing. Even the correctness of its results could be
ensured, our certified SMT QFBV solver CoqQFBV would not be very useful
if it were extremely inefficient. In order to evaluate its performance, we run Coq-
QFBV on benchmarks from the QFBV division of the single query track in the
2020 SMT Competition. With the same memory and time limits in the competi-
tion, our solver successfully finishes 88.72% of the 6861 queries with certification.
In comparison, CVC4 with its certificate checker solves 55.97% with certifi-
cation, and the division winner Bitwuzla solves 98.22% of the benchmarks
without certification. Our certified solver outperforms CVC4 with certification
significantly. Generating and checking certificates make our certified solver finish
about 10% of the queries less than the division winner. The price of accuracy
perhaps is not unacceptable for the benchmarks in the competition. To fur-
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ther evaluate CoqQFBV, the certified solver is used to verify linear arithmetic
assembly programs from various cryptography libraries such as OpenSSL [30].
CoqQFBV gives certified answers to 96.88% out of the 96 SMT QFBV queries
from real-world cryptographic program verification. CVC4 with its certificate
checker certifies 19.79%. Compared with efficient SMT QFBV solvers without
certification, Boolector is able to solve 100% and Bitwuzla solves 91.67% of
the queries. Intriguingly, our certified SMT QFBV solver outperforms the 2020
division winner Bitwuzla in queries from real-world verification problems. Our
certified solver is probably useful for real-world verification problems.

Related Work. As mentioned, SMT certificate generating and checking are chal-
lenging. There are few efforts developing SMT QFBV certificate checkers, let
alone verified ones. CVC4 is able to produce unsatisfiability certificates for
QFBV queries, and also equipped with an (unverified) certificate checker [14].
SMTCoq [12] is proposed to check certificates from SMT solvers veriT and
CVC4. It supports fragments of several logics including the QFBV logic. More-
over, its correctness is formally proved in Coq. However, the QFBV logic is
not fully supported by SMTCoq. Z3 also supports certificate generation for the
QFBV logic [19]. The proofs can be reconstructed, thus checked, within proof
assistants HOL4 and Isabelle [6]. But the lack of details in Z3’s generated
certificates makes proof reconstruction particularly challenging.

With a similar approach in this paper, GL is a framework for bit blasting
finitely bounded ACL2 theorems into SAT queries [28]. Its bit blasting algorithm
is formally verified in ACL2. Though it is not designed for SMT-LIB, most of
the operations defined in the QFBV logic are supported, except division and
concatenation for instance. A bit blasting algorithm is defined and verified in
HOL4 as well [13]. Neither [28] nor [13] aims to develop a scalable SMT QFBV
solver. CoqQFBV accepts SMT-LIB inputs with fully supported QFBV logic
while adopting performance optimizations such as caches.

In Isabelle and HOL4, one can use the bit-vector libraries to conform
SMT-LIB operations, see [17] for example. Under the frame of Coq, coq-bits
is a formalization of logical and arithmetic operations on bit-vectors [15]. The
library provides the mapping between bit-vector operations and abstract number
operations. Different from our theory, it does not support division/remainder or
signed operations. Why3 [11] provides a bit-vector theory which is formalized
in Coq too. It defines the division by zero in a different way from SMT-LIB.
Moreover, the operations are defined based on integer operations. Our new bit-
vector theory instead defines bit-vector operations through bit manipulation. It
is more suitable for the correctness proof of bit blasting algorithms.

We have the following organization. After the introduction, an overview is
given in Section 2. Section 3 reviews preliminaries. Our formal bit-vector the-
ory is presented in Section 4. It is followed by the formal semantics of SMT
QFBV queries (Section 5). The correctness of our bit blasting algorithm is es-
tablished in Section 6. Section 7 outlines the construction of our certified SMT
QFBV solver. Experiments are presented in Section 8. Section 9 concludes our
presentation.
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2 Methodology Overview

Given an SMT QFBV query, a bit blasting algorithm computes a Boolean
formula such that the SMT QFBV query is satisfiable if and only if the Boolean
formula is satisfiable. The QFBV logic contains arithmetic operations for bit-
vectors. Computing an equi-satisfiable Boolean formula for an arbitrary SMT
QFBV query can be very complicated and susceptible to errors. Our goal is
to construct a correct bit blasting program for every SMT QFBV query. The
correctness of the program moreover is verified by the proof assistant Coq to
minimize gaps or even errors in hand-written proofs.

Our construction is based on a new formal bit-vector theory coq-nbits (Sec-
tion 4). In coq-nbits, we define bit-vectors and their functions on top of the
Coq data type for Boolean sequences. In order to support the QFBV logic
of SMT-LIB fully, five arithmetic bit-vector functions (addition, subtraction,
multiplication, division, and remainder) are defined in our formal theory. To es-
tablish the correctness of our definitions, formal proofs are provided to relate
bit-vector functions with their arithmetic counterparts. For instance, we show
the number represented by the output of the bit-vector negation function is in-
deed the arithmetic negation of the number represented by the input bit-vector.

Using our coq-nbits theory, we then give a formal semantics for SMT
QFBV queries as defined in SMT-LIB (Section 5). In our formalization, a
QFBV predicate denotes a Boolean value; and a QFBV expression denotes a
bit-vector. An SMT QFBV query is formalized as a Boolean combination of
QFBV predicates on QFBV expressions over QFBV variables and bit-vector
constants. In order to demonstrate the correctness of our formal semantics for
SMT QFBV queries, formal proofs are provided to show that our formal se-
mantics coincides with those defined in SMT-LIB.

Our bit blasting algorithm is given in Coq (Section 6). It extends Tseitin
transformation for Boolean formulae to SMT QFBV queries. More precisely, a
QFBV predicate is transformed to a literal with a Boolean formula; a QFBV
expression is transformed to a literal sequence with a Boolean formula. Using our
formalization of SMT QFBV queries, the correctness of bit blasting algorithm
is established in Coq by mutual induction. To improve efficiency, our bit blasting
algorithm is further optimized with more economic transformations and a cache.
The optimized bit blasting algorithm is also verified with formal Coq proofs.

Our formally verified bit blasting algorithm is written in the Coq specifica-
tion language. It is not yet a program compilable into executable binary codes.
Using the code extraction mechanism in Coq, an OCaml program is extracted
from our verified bit blasting algorithm. The OCaml program takes expressions
in our formal SMT QFBV query syntax as inputs and returns expressions in
our formal syntax for Boolean formulae as outputs. SAT solvers can be em-
ployed to decide satisfiability of output Boolean formulae. Their certificates can
be validated by SAT certificate checkers independently (Section 7).
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3 Preliminaries

Let v be a Boolean variable with values ff and tt . A literal is of the form v or ¬v.
A clause is a disjunction l0∨l1∨· · ·∨lk of literals l0, l1, . . . , lk. A Boolean formula
in the conjunctive normal form (CNF) is a conjunction c0∧c1∧· · ·∧cm of clauses
c0, c1, . . . , cm. A SAT query is a Boolean CNF formula. An environment maps
Boolean variables to their values. Given a SAT query, the Boolean satisfiability
problem is to decide if the query evaluates to tt on some environments.

A bit-vector of width w is written as #bbw−1bw−2 · · · b0 with bi ∈ {0, 1} for 0 ≤
i < w. In the unsigned representation, the bit-vector #bbw−1bw−2 · · · b0 denotes
the natural number (non-negative integer)

∑
0≤i<w bi2

i; in two’s complement

(signed) representation, it denotes the integer
∑

0≤i<w−1 bi2
i − 2w−1bw−1. For

instance, #b1010 denotes 10 and −6 in the unsigned and two’s complement
representations respectively. We use bv2nat(bv) for the natural number denoted
by the bit-vector bv in the unsigned representation; and nat2bv(w, i) stands for
the bit-vector of width w representing the natural number i modulo 2w.

Let bv = #bbw−1bw−2 · · · b0 and cv = #bcu−1cu−2 · · · c0 be bit-vectors of
widths w and u respectively. The following QFBV operations are defined in
the QFBV logic of SMT-LIB: concat bv cv , #bbw−1bw−2 · · · b0cu−1cu−2 · · · c0
is the concatenation of bv and cv ; extract i j bv , #bbibi−1 · · · bj extracts bits
from bv where 0 ≤ j ≤ i < w; bvnot bv , bvand bv cv , and bvor bv cv are the
bitwise complement, and, or operations respectively. Additionally, bvneg bv ,
nat2bv(w, 2w − bv2nat(bv)) is the arithmetic negation operation; bvadd bv cv ,
nat2bv(w, bv2nat(bv) + bv2nat(cv)) is the arithmetic addition operation; and
bvmul bv cv , nat2bv(w, bv2nat(bv)× bv2nat(cv)) is the arithmetic multiplica-
tion operation. The arithmetic division and remainder operations are

bvudiv bv cv ,
{ nat2bv(w, 2w − 1) if bv2nat(cv) = 0

nat2bv(w, bv2nat(bv)÷ bv2nat(cv)) otherwise

bvurem bv cv ,
{ bv if bv2nat(cv) = 0

nat2bv(w, bv2nat(bv) mod bv2nat(cv)) otherwise.

Note that the arithmetic division and remainder operations are defined even
when the divisor represents the number zero. Finally, the operations bvshl bv cv ,
nat2bv(w, bv2nat(bv)×2bv2nat(cv)) shifts the bit-vector bv to the left by bv2nat(cv)
bits; bvlshr bv cv , nat2bv(w, bv2nat(bv)÷ 2bv2nat(cv)) shifts the bit-vector
bv to the right by bv2nat(cv) bits. In addition to bit-vector operations, the
QFBV logic of SMT-LIB defines QFBV predicates on bit-vectors. The pred-
icate bveq bv cv is true when the bit-vectors bv and cv are equal; bvult bv cv
is true if bv2nat(bv) < bv2nat(cv). In the QFBV logic of SMT-LIB, both
operands of binary operations and predicates must have the same width. Over-
all, seventeen bit-vector operations and predicates are defined in the QFBV
logic of SMT-LIB. Particularly, arithmetic division and remainder operations
with operands in both unsigned and two’s complement signed representations
are defined in SMT-LIB.

A QFBV variable denotes a bit-vector. A QFBV expression is constructed
from QFBV operations over QFBV variables and bit-vectors. An SMTQFBV
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query is a Boolean combination of QFBV predicates on QFBV expressions.
Let stores be mappings from QFBV variables to bit-vectors. Given an SMT
QFBV query, the satisfiability modulo QFBV theory problem is to decide if
the query evaluates to tt on some stores.

4 Bit-Vector Theory

We present our formal Coq bit-vector theory coq-nbits in this section. The
coq-nbits theory supports bit-vectors in both unsigned and two’s complement
signed representations. In coq-nbits, a bit-vector is represented by a Boolean
sequence of the data type bits in the least significant bit-first order.

Definition bits : Set := seq bool.

In the definition, bool and seq are the data types for Boolean values (false and
true) and sequences in Coq respectively. For instance, the bit-vector #b100 is
represented by [:: false; false; true] in coq-nbits.

Coq functions defined for sequences are applicable to bit-vectors. Particu-
larly, size bv computes the width of the bit-vector bv and bv ++ cv is the concate-
nation of the bit-vectors bv and cv . It is also straightforward to define auxiliary
bit-vector functions. For example, zeros n returns the bit-vector of n false’s;
ones n returns the bit-vector of n true’s; extract i j bv returns the sub-sequence
of the bit-vector bv with indices from j to i where 0 ≤ j ≤ i < size bv . Let
a , [:: false; false; true]. Then size a = 3 and extract 2 1 a = [:: false; true].

Bitwise functions are defined as easily. For instance, the bitwise inverse func-
tion maps each Boolean value to its complement:

Definition invB bv : bits := map (fun b => ~~b) bv .

Other bitwise functions are defined similarly. Specifically, bitwise and andB, bit-
wise or orB, logical left shift shlB, logical right shift shrB are all defined in
coq-nbits. Let b , [:: false; true; true]. We have invB b = [:: true; false;
false], andB a b = [:: false; false; true], and shlB 1 b = [:: false; false; true].

Arithmetic bit-vector functions are slightly more complicated. To prove prop-
erties about arithmetic functions, coq-nbits provides conversion functions be-
tween bit-vectors and natural numbers.

Definition to N (bv : bits) : N :=

foldr (fun b res => N_of_bool b + res * 2) 0 bv .

In the definition, to N bv converts the bit-vector bv to a natural number where
N of bool false = 0 and N of bool true = 1. The to N function multiplies the
previous result by two and adds the least significant bit b. For instance, to N a

= to N [:: false; false; true] = 4. The function from N w n, on the other hand,
converts any natural number n to a bit-vector of width w.

Fixpoint from N (w : nat) (n : N) : bits :=

match w with

| O => [::]
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| S w′ => (N.odd n)::(from N w′ (N.div n 2))

end.

The function first checks the width w. If the width is zero, it returns the empty
bit-vector. Otherwise, the function returns the bit-vector with the least signif-
icant bit N.odd n and the remaining w − 1 bits representing n divided by two.
Observe that two Coq formalizations of natural numbers are used. The nat

theory uses the unary representation suitable for inductive proofs; N uses the
succinct binary representation. The following lemma is proved in Coq:

Lemma 1. The following properties hold:

1. ∀bv , from N (size bv) (to N bv) = bv.
2. ∀w n, n < 2w =⇒ to N (from N w n) = n.

The first property shows that bit-vectors can be converted to natural numbers
and back to themselves. The second property shows that natural numbers can
be converted to bit-vectors with sufficient widths and back to themselves. To see
how they are used to prove properties about bit-vector functions in coq-nbits,
consider the definition of the successor bit-vector function.

Fixpoint succB (bv : bits) : bits :=

match bv with

| [::] => [::]

| hd ::tl => if hd then false ::(succB tl) else true::tl
end.

If the input is the empty bit-vector, the function returns the empty bit-vector.
Otherwise, succB checks the least significant bit of the input bit-vector. If the bit
is true, the function computes the successor of the remaining bits and appends
false as the least significant bit. If the least significant bit of the input is
false, the function simply changes the least significant bit to true and copies
the remaining bits. Using the conversion functions, the bit-vector successor is
related to the arithmetic successor in the following lemma:

Lemma 2. ∀bv , succB bv = from N (size bv) ((to N bv) + 1).

Lemma 2 says that succB bv does compute the bit-vector representing the arith-
metic successor of the natural number represented by the bit-vector bv . Observe
that the successor bit-vector function is correct when the input bit-vector is
empty. It is also correct when there is overflow. Indeed, both sides are zeros of
width size bv when overflow occurs.

Other arithmetic bit-vector functions are defined and proved in coq-nbits

similarly. Specifically, the arithmetic negation negB, addition addB, subtraction
subB, unsigned multiplication mulB, unsigned division divB, and unsigned re-
mainder remB functions are supported by coq-nbits. We give properties to
relate the arithmetic functions for bit-vectors and natural numbers.

Lemma 3. The following properties hold:
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1. ∀bv cv , size bv = size cv =⇒ to N (addB bv cv) = (to N bv + to N cv)
mod 2size bv .

2. ∀bv cv , to N (mulB bv cv) = (to N bv × to N cv) mod 2size bv .
3. ∀bv n, divB bv (zeros n) = ones (size bv).
4. ∀bv bv , size bv = size cv =⇒ cv 6= zeros (size cv) =⇒ to N (divB bv cv) =

(to N bv) div (to N cv).
5. ∀bv n, remB bv (zeros n) = bv.
6. ∀bv cv , size bv = size cv =⇒ cv 6= zeros (size cv) =⇒ to N (remB bv cv) =

(to N bv) mod (to N cv).
7. ∀bv n, to N (shlB n bv) = ((to N bv)× 2n) mod 2size bv

8. ∀bv n, to N (shrB n bv) = (to N bv) div 2n.

Let bv , cv be bit-vectors of width w. Lemma 3 shows that the natural number
represented by the bit-vector addB bv cv is equal to the modular sum of the
natural numbers represented by bv and cv . Similarly, the natural number rep-
resented by mulB bv cv is equal to the modular product of the natural numbers
represented by bv and cv . The division and remainder functions in coq-nbits

follow the SMT-LIB semantics. Specifically, the quotient of any bit-vector di-
vided by zero is equal to the bit-vector of all true’s; the remainder of a bit-vector
divided by zero is the bit-vector itself. For non-zero divisors, the division and
remainder functions behave as expected. The natural number represented by the
bit-vector divB bv cv is the quotient of the number represented by bv divided
by the number represented by cv ; and the bit-vector remB bv cv represents the
remainder of the number represented by bv divided by the number represented
by cv . Last but not least, the logical left (shlB) and right (shrB) shifts correspond
to multiplication and division by powers of two respectively.

coq-nbits also provides comparison predicates. In addition to the equality
predicate == inherited from Boolean sequences, ltB bv cv and leB bv cv compare
the natural numbers represented by the bit-vectors bv and cv . Properties about
comparison predicates have also been proved in Coq.

Lemma 4. The following properties hold:

1. ∀bv cv , size bv = size cv =⇒ ltB bv cv = (to N bv < to N cv).
2. ∀bv cv , size bv = size cv =⇒ leB bv cv = (to N bv ≤ to N cv).

In addition to arithmetic functions and predicates in the unsigned represen-
tation, our formal bit-vector theory moreover defines arithmetic functions and
predicates for bit-vectors in two’s complement representation. For the signed
representation, bit-vectors are converted to integers by the to Z function. Arith-
metic bit-vector functions and predicates in the signed representation are related
to arithmetic integer functions and predicates as follows.

Lemma 5. The following properties hold:

1. ∀bv ,¬(msb bv ∧ dropmsb bv = zeros (size bv − 1)) =⇒ to Z (negB bv) =
−to Z bv.
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2. ∀bv n, 1 < size bv =⇒ to Z (sarB n bv) = (to Z bv) quot 2n.
3. ∀bv cv , size bv = size cv =⇒ to Z (mulB (sext (size cv) bv) (sext (size bv)

cv)) = to Z bv × to Z cv.
4. ∀bv cv, 1 < size bv =⇒ size bv = size cv =⇒ [¬(msb bv ∧ dropmsb bv =

zeros (size bv−1))∨cv 6= ones (size cv)] =⇒ to Z (sdivB bv cv) = (to Z bv)
quot (to Z cv).

5. ∀bv cv , 1 < size bv =⇒ size bv = size cv =⇒ to Z (sremB bv cv) =
(to Z bv) rem (to Z cv).

6. ∀bv cv , size bv = size cv =⇒ sltB bv cv = (to Z bv < to Z cv).
7. ∀bv cv , size bv = size cv =⇒ sleB bv cv = (to Z bv ≤ to Z cv).

In the lemma, sext n bv extends the bit-vector bv by n bits with the sign
bit of bv , msb bv returns the sign bit of bv , and dropmsb bv drops the sign bit
of bv . quot and rem are the quotient and remainder functions for Coq integers.
Consider, for instance, the signed division function sdivB bv cv in coq-nbits

(Lemma 5(4)). If the dividend bv is of width > 1, the widths of bv and the
divisor cv are equal, and bv is not of the form #b100 · · · 0 or cv is not of the
form #b11 · · · 1, then the bit-vector sdivB bv cv represents the quotient of the
integers represented by bv and cv . The condition may appear counter-intuitive.
To see why it is necessary, consider bv = #b100 · · · 0 and cv = #b11 · · · 1 both of
width w. bv and cv thus represent the integers −2w−1 and −1 respectively. Their
quotient 2w−1 however cannot be represented by bit-vectors of width w in two’s
complement representation. The corner input case is hence excluded. The corner
case is also excluded from the arithmetic negation function (Lemma 5(1)).

The coq-nbits theory has several important differences from the prior Coq
formalization in [15]. Our formal bit-vector theory supports both unsigned and
two’s complement signed representations. It also provides the arithmetic division
and remainder functions. Since these features are needed in the QFBV logic of
SMT-LIB, they are essential to the formalization of SMT QFBV queries. Such
important features unfortunately are lacking in the prior formalization. Another
noted difference is the numeric representations used in theory developments.
Since integers are needed for the QFBV logic, coq-nbits naturally uses binary
representations for integers and natural numbers in Coq. The prior formalization
on the other hand is mainly based on the unary natural number representation
but provides conversion to positive integers in the binary representation.

5 Theory for SMT QF BV Queries

Using coq-nbits, we formalize SMT QFBV queries. Our formalization con-
sists of two parts: a syntactic representation for SMT QFBV queries in Coq
inductive types and a formal semantics in our bit-vector theory coq-nbits.

5.1 Syntax of SMT QFBV Queries

An SMT QFBV query is a Coq term of the data type bexp. It can be constants
Bfalse or Btrue, a unary predicate Bnot, or binary predicates Band or Bor for
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Boolean connectives. Additionally, Bbveq and Bbvult with two arguments of the
data type exp are binary QFBV predicates.

Inductive bexp : Type := Bfalse : bexp | Btrue : bexp

| Bnot : bexp -> bexp

| Band : bexp -> bexp -> bexp | Bor : bexp -> bexp -> bexp

| Bbveq : exp -> exp -> bexp | Bbvult : exp -> exp -> bexp

(* other QF_BV predicates *)

end with exp : Type :=

| Evar : var -> exp | Econst : bits -> exp

| Ebvnot : exp -> exp

| Ebvand : exp -> exp -> exp | Ebvor : exp -> exp -> exp

| Ebvshl : exp -> exp -> exp | Ebvlshr : exp -> exp -> exp

| Ebvneg : exp -> exp

| Ebvadd : exp -> exp -> exp | Ebvmul : exp -> exp -> exp

| Ebvudiv : exp -> exp -> exp | Ebvurem : exp -> exp -> exp

| Eextract : nat -> nat -> exp -> exp

| Econcat : exp -> exp -> exp

(* other QF_BV operations *)

| Ebvsub : exp -> exp -> exp

end.

A Coq term of the data type exp represents a QFBV expression. It can be
a QFBV variable Evar vid with a variable identifier vid : var, a bit-vector con-
stant Econst bv with bv : bits, a bitwise-not operation Ebvnot e0, a bitwise-and
operation Ebvand e0 e1, a bitwise-or operation Ebvor e0 e1, a logical left-shift
operation Ebvshl e0 e1, or a logical right-shift operation Ebvlshr e0 e1. For
arithmetic operations, there are Ebvneg e0 for negation, Ebvadd e0 e1 for addi-
tion, Ebvmul e0 e1 for multiplication, Ebvudiv e0 e1 for unsigned division, and
Ebvurem e0 e1 for unsigned remainder with e0, e1 : exp. Finally, the extraction
Eextract i j e0 and the concatenation Econcat e0 e1 operations have the data
type exp with i, j : nat and e0, e1 : exp.

5.2 Semantics of SMT QFBV Queries

In our Coq formalization, an SMT QFBV query is interpreted on stores. A
store is a mapping from QFBV variables to bits. Let σ be a store. The inter-
pretation of be : bexp on σ is a Boolean value; the interpretation of e : exp on σ
is a bit-vector. Semantic functions eval bexp and eval exp are as follows.

Fixpoint eval bexp (be : bexp) (σ : store) : bool :=

match be with

| Bfalse => false

| Btrue => true

| Bnot be0 => ~~ (eval bexp be0 σ)
| Band be0 be1 => (eval bexp be0 σ) && (eval bexp be1 σ)
| Bor be0 be1 => (eval bexp be0 σ) || (eval bexp be1 σ)
| Bbveq e0 e1 => (eval exp e0 σ) == (eval exp e1 σ)
| Bbvult e0 e1 => ltB (eval exp e0 σ) (eval exp e1 σ)
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(* other QF_BV predicates *)

end with eval exp (e : exp) (σ : store) : bits :=

match e with

| Evar v => Store.acc v σ
| Econst bv => bv
| Ebvnot e0 => invB (eval exp e0 σ)
| Ebvand e0 e1 => andB (eval exp e0 σ) (eval exp e1 σ)
| Ebvor e0 e1 => orB (eval exp e0 σ) (eval exp e1 σ)
| Ebvshl e0 e1 => shlB (to nat (eval exp e1 σ)) (eval exp e0 σ)
| Ebvlshr e0 e1 => shrB (to nat (eval exp e1 σ)) (eval exp e0 σ)
| Ebvneg e0 => negB (eval exp e0 σ)
| Ebvadd e0 e1 => addB (eval exp e0 σ) (eval exp e1 σ)
| Ebvmul e0 e1 => mulB (eval exp e0 σ) (eval exp e1 σ)
| Ebvudiv e0 e1 => divB (eval exp e0 σ) (eval exp e1 σ)
| Ebvurem e0 e1 => remB (eval exp e0 σ) (eval exp e1 σ)
| Eextract i j e0 => extract i j (eval exp e0 σ)
| Econcat e0 e1 => (eval exp e1 σ) ++ (eval exp e0 σ)
(* other QF_BV operations *)

| Ebvsub e0 e1 => subB (eval exp e0 σ) (eval exp e1 σ)
end.

An SMT QFBV query denotes a value in the Coq data type bool. Bfalse
and Btrue denote false and true respectively. Boolean negation, conjunction,
and disjunction correspond to ~~, &&, and || in bool respectively. For QFBV
predicates, the bit-vector equality Bbveq is interpreted by the equality == for
Boolean sequences. The coq-nbits function ltB is used to interpret Bbvult.

A QFBV expression denotes a bit-vector. For basic cases, QFBV variables
are interpreted by corresponding bit-vectors in the store σ through the store
access function Store.acc; bit-vector constants are interpreted by themselves.
Bitwise logical operations Ebvnot, Ebvand, and Ebvor are interpreted by cor-
responding coq-nbits functions invB, andB, and orB respectively. For logical
shift operations, the offset e1 is first converted to a natural number through
to nat (eval exp e1 σ) and then passed to the corresponding logical shift func-
tions shlB or shrB in coq-nbits. QFBV arithmetic operations are interpreted by
corresponding coq-nbits arithmetic functions as expected. Finally, the extrac-
tion Eextract and concatenation Econcat operations are interpreted by extract
and ++ in coq-nbits respectively.

In an SMT QFBV query, a QFBV variable designates a bit-vector of a
certain width. An SMT QFBV query is hence associated with a signature Σ
mapping QFBV variables to their respective widths. A store σ conforms to a
signatureΣ if the interpretation of each QFBV variable on σ has the same width
as specified in Σ. Given an SMT QFBV query be : bexp with its signature Σ,
be is satisfiable if there is a store σ conforming to Σ and eval bexp be σ = true.

5.3 Derived QFBV Operations and Predicates

In the QFBV logic of SMT-LIB, a number of QFBV operations and predicates
are derived from a small set of core operations and predicates. Consider the
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signed comparison predicate bvslt bv cv in SMT-LIB:

bvslt bv cv , (or (and (= (extract (w − 1) (w − 1) bv) #b1)
(= (extract (w − 1) (w − 1) cv) #b0))

(and (= (extract (w − 1) (w − 1) bv)
(extract (w − 1) (w − 1) cv))

(bvult bv cv))).

To compare two bit-vectors of width w in two’s complement representation,
the sign bits are checked. If bv is negative but cv is positive, bvslt bv cv is
true. Otherwise, the signed predicate checks that both operands have the same
sign and compares the operands using the unsigned comparison predicate. In-
terestingly, the arithmetic subtraction operation is actually a derived operation
in SMT-LIB: bvsub bv cv , bvadd bv (bvneg cv). The arithmetic operation is
defined to be the bit-vector sum of minuend and the negation of subtrahend.
It is not, for instance, defined as nat2bv(w, bv2nat(bv)− bv2nat(cv)) because
bv2nat(bv)− bv2nat(cv) may not be a natural number.

For derived operations and predicates, there is a subtle yet important dif-
ference between our formal semantics and those defined in SMT-LIB. In our
formal bit-vector theory coq-nbits, most functions and predicates are defined
directly. Particularly, the arithmetic subtraction function subB is defined by one-
bit subtractors in coq-nbits. Our formal semantics for the QFBV arithmetic
operation bvsub therefore is defined by the corresponding bit-vector function
subB. Since our formal semantics did not define bvsub by bvadd and bvneg , it
could be different from those in SMT-LIB. In order to build a certified solver
for the QFBV logic of SMT-LIB, it is necessary to establish semantic equiva-
lences between both semantic definitions for all derived QFBV operations and
predicates.

To justify our formal semantics, we show the semantics of our definitions and
those of SMT-LIB indeed denote the same bit-vector functions or predicates.
Consider again the subtraction operation. Recall the semantics of the arithmetic
operations bvadd and bvneg are defined by the bit-vector functions addB and
negB respectively. The next lemma is useful to show the semantic equivalence:

Lemma 6. ∀bv cv , size bv = size cv =⇒ subB bv cv = addB bv (negB cv).

For all derived QFBV operations and predicates, we give Coq proofs for the
equivalence between our formal semantics and those of SMT-LIB. Particularly,
semantics of all QFBV arithmetic operations and predicates over two’s comple-
ment representation are equivalent to those in SMT-LIB. Our formal semantics
for QFBV queries is thus certified to be equivalent to SMT-LIB.

6 Certified Bit Blasting

Recall that a SAT query is a Boolean CNF formula. Given an SMT QFBV
query, a bit blasting algorithm computes a SAT query that is satisfiable if and
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only if the given SMT QFBV query is satisfiable. Although it is the standard
technique for solving SMT QFBV queries, bit blasting can be very complex
due to arithmetic operations and various optimizations. Bit blasting algorithms
therefore can be tedious to construct and thus prone to errors. We verify a bit
blasting algorithm for SMT QFBV queries using our Coq formalization.

Let us start with a simple formalization of Boolean CNF formulae. In our
formalization, a clause is represented by a sequence of literals; a CNF formula
in turn is represented by a sequence of clauses. Let bvar be the data type for
Boolean variables. We have the following data types in Coq:

Inductive lit : Set := Pos of bvar | Neg of bvar.

Definition clause : Set := seq lit.

Definition CNF : Set := seq clause.

Define an environment ε to be a mapping from bvar to bool. Given a literal
`, a CNF formula f , and an environment ε, it is straightforward to define the
semantic functions eval lit ` ε : bool and eval cnf f ε : bool. A SAT query
f is satisfiable if there is an environment ε such that eval cnf f ε = true.

To illustrate how our Coq proof works, consider Tseitin transformation for
the logical negation operation:

Definition bit blast Bnot ` : lit * CNF :=

let r := a fresh literal in

(r, [:: [:: r; `]; [:: !r; !`] ]).

Given a literal `, bit blast Bnot ` returns a new literal r and the CNF
formula (r∨ `)∧ (¬r∨¬`). Tseitin transformation ensures the interpretations of
` and r are complementary on any environment ε evaluating the CNF formula
to true. We give a formal proof using our formalization in Coq:

Lemma 7. ∀r cnf ` ε, (r, cnf ) = bit blast Bnot ` =⇒ eval cnf cnf ε =
true =⇒ eval lit r ε = ~~ (eval lit ` ε).

The idea is generalized to QFBV operations naturally. For each QFBV
operation, we construct a literal sequence r and a Boolean CNF formula cnf .
If cnf evaluates to true on an environment ε, the interpretation of r on ε needs
to reflect the semantics of the QFBV operation. For instance, a Coq proof is
given for the QFBV addition operation:

Lemma 8. ∀r cnf `0 `1 ε, (r, cnf ) = bit blast Ebvadd `0 `1 =⇒ eval cnf cnf ε
= true =⇒ eval lits r ε = addB (eval lits `0 ε) (eval lits `1 ε).

Given two literal sequences `0 and `1, bit blast Ebvadd `0 `1 returns a
literal sequence r and a CNF formula cnf . If cnf evaluates to true on an envi-
ronment ε, then the interpretation of the literal sequence r on ε is indeed the
bit-vector sum of the interpretations of `0 and `1 on ε. Bit blasting algorithms for
other QFBV operations are given and shown to reflect the semantics of corre-
sponding functions defined in the bit-vector theory coq-nbits. Particularly, our
bit blasting algorithms for arithmetic division and remainder correctly reflect
corresponding arithmetic bit-vector functions in coq-nbits.
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Recall that the semantics for SMT QFBV queries is defined over stores for
QFBV variables. In order to prove the correctness of bit blasting algorithms,
one has to relate stores for QFBV variables with environments for Boolean
variables. The relation is explicated through literal correspondences. A literal
correspondence π is a mapping from QFBV variables to sequences of literals.
For each QFBV variable v, the literal sequence π(v) is meant to interpret v on
environments for Boolean variables. More formally, let eval lits ` ε : bits be
the bit-vector for the literal sequence ` interpreted on the environment ε. The
bit-vector eval lits π(v) ε is hence the interpretation of the QFBV variable v
on the environment ε. Let σ be a store and π a literal correspondence. An envi-
ronment ε is consistent with σ through π if the bit-vectors eval lits π(v) ε and
Store.acc v σ are equal for every QFBV variable v in σ. Thus, an environment
is consistent with a store if their interpretations of variables coincide.

It is now straightforward to give our bit blasting algorithm for SMT QFBV
queries. For each QFBV expression, our algorithm first computes literals and
CNF formulae for operands recursively. It then invokes an auxiliary bit blasting
algorithm to construct result literals and a CNF formula for the QFBV oper-
ation. The literal correspondence is also updated when literals are allocated for
QFBV variables. Finally, the result literals and the updated literal correspon-
dence are returned along with the concatenation of all CNF formulae.

Definition bit blast bexp Σ π b : lit * correspondence * CNF :=

match be with

| Bnot be0 =>

let (r0, π′, cnf 0) := bit blast bexp Σ π be0 in

let (r, cnf ) := bit blast Bnot r0 in

(r, π′, cnf ++ cnf 0)
(* other QF_BV predicates *)

end with bit blast exp Σ π e : seq lit * correspondence * CNF :=

match e with

| Evar v =>

if π(v) is defined then (π(v), π, [::])

else let r := fresh literals for v according to Σ in

let π′ := update π with v 7→ r in

(r, π′, [::])

| Ebvadd e0 e1 =>

let (r0, π′, cnf 0) := bit blast exp Σ π e0 in

let (r1, π′′, cnf 1) := bit blast exp Σ π′ e1 in

let (r, cnf ) := bit blast Ebvadd r0 r1 in

(r, π′′, cnf ++ cnf 0 ++ cnf 1)
(* other QF_BV operations *)

end.

The following Coq theorem establishes the connection between the output
literals and the input SMT QFBV query or expression of the algorithm.

Theorem 1. Let be : bexp be an SMT QFBV query with the signature Σbe ,
e : exp a QFBV expression with the signature Σe, and π0 the empty literal
correspondence.
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1. ∀r π cnf σ ε, (r, π, cnf ) = bit blast bexp Σbe π0 be =⇒ σ conforms to Σbe

=⇒ ε is consistent with σ through π =⇒ eval cnf cnf ε = true =⇒
eval lit r ε = eval bexp be σ.

2. ∀r π cnf σ ε, (r, π, cnf ) = bit blast exp Σe π0 e =⇒ σ conforms to Σe

=⇒ ε is consistent with σ through π =⇒ eval cnf cnf ε = true =⇒
eval lits r ε = eval exp e σ.

Let be be an SMT QFBV query with the signature Σbe , r and cnf the
literal and CNF formula returned by bit blast bexp respectively. Consider any
store conforming to Σbe and any environment consistent with the store. If the
environment evaluates the formula cnf to true, Theorem 1 says that the literal
r and the SMT QFBV query be evaluate to the same Boolean value on the en-
vironment and store respectively. In other words, the algorithm bit blast bexp

is a generalized Tseitin transformation for SMT QFBV queries. Particularly,
all QFBV arithmetic operations (addition, subtraction, multiplication, divi-
sion, and remainder in the unsigned and two’s complement representations) are
transformed to CNF formulae with formal proofs of correctness in Coq.

A useful corollary to Theorem 1 is the reduction of the satisfiability of SMT
QFBV queries to the satisfiability of SAT queries.

Corollary 1. Let be : bexp be an SMT QFBV query with the signature Σbe

and π0 the empty literal correspondence. Then
∀r π cnf , (r, π, cnf ) = bit blast bexp Σbe π0 be =⇒

[(∃σ, σ conforms to Σbe ∧ eval bexp be σ = true)⇐⇒
(∃ε, eval cnf ([:: [:: r]] ++ cnf ) ε = true)].

Corollary 1 gives the formal proof of correctness for our bit blasting algorithm
bit blast bexp. Let be be an arbitrary SMTQFBV query, r and cnf the literal
and the CNF formula returned by the algorithm. The corollary shows that the
query be is satisfiable if and only of the SAT query r ∧ cnf is satisfiable. An
equi-satisfiable SAT query is indeed obtained from the bit blasting algorithm
on every input SMT QFBV query with a formal proof of correctness.

Recall that several QFBV operations and predicates are derived from a
small number of operations and predicates in SMT-LIB. A näıve bit blasting
algorithm could expand derived operations or predicates, and then perform bit
blasting on a small set of operations and predicates. Such an algorithm would
have a simpler proof of correctness but generate more intermediate literals and
clauses. For instance, the näıve algorithm for bvsub would perform bit blasting on
bvneg followed by bvadd with intermediate literals and clauses. Our bit blasting
algorithm for bvsub on the other hand reflects our semantics defined by the bit-
vector function subB. Intermediate literals or clauses are not needed. Our bit
blasting algorithm hence transforms bvsub more economically than the näıve
algorithm.

To improve our bit blasting algorithm further, a cache for QFBV expressions
and predicates is added. In large queries, QFBV expressions and predicates can
occur a number of times. If a QFBV expression has several occurrences, our
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basic bit blasting algorithm will generate result literals and CNF formulae for
each occurrence. Consider the SMT QFBV query

(and (bvslt #b1000 (bvadd x y)) (bvslt (bvadd x y) #b0111)).

The query checks whether the sum of the QFBV variables x and y can be in
a proper range. Since the Boolean predicate and has two operands, our basic
algorithm invokes the auxiliary bit blasting algorithm for the two comparison
predicates. It in turn blasts the same expression bvadd x y twice. Repeated bit
blasting on the same expression or predicate is redundant. A hash function can
detect repeated QFBV expressions and predicates easily. When an expression
or a predicate recurs, the previously computed literals with the empty CNF
formula are returned from a cache as the result. More importantly, we give a
formal Coq proof of Corollary 1 for the bit blasting algorithm with a cache.

7 A Certified SMT QF BV Solver

We have so far built a formally verified bit blasting algorithm for SMT QFBV
queries. Using the code extraction mechanism in Coq, an OCaml program
corresponding to the verified bit blasting algorithm is obtained. Using a SAT
solver and a SAT certificate checker, a certified SMT QFBV solver can be
constructed. Figure 1 gives the flow of our certified solver.

OCaml
program

SAT
solver

SAT

UNSAT
certificate
checker

SAT

UNSAT

be : bexp cnf : CNF

Fig. 1: Certified SMT QFBV Solver

In the figure, the extracted OCaml program takes an OCaml expression
be of the type bexp as an input (Section 5). The verified program performs bit
blasting on the SMTQFBV query and returns an OCaml expression cnf of the
type lit list list representing a SAT query (Section 6). Precisely, an OCaml
term of the type lit represents a literal. The OCaml type lit list corresponds
to the data type for clauses; and the type lit list list corresponds to the
data type for CNF formulae. The expression cnf is sent to a SAT solver to
check satisfiability. If the SAT solver reports SAT, the SMT QFBV query
represented by be is satisfiable. Otherwise, the SAT solver reports UNSAT with
a certificate. The certificate is sent to a SAT certificate checker for validation.
If it is validated, the SMT QFBV query be is unsatisfiable with certification.
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8 Experiments

In order to evaluate the performance of our verified OCaml bit blasting pro-
gram, we instantiate our SMT QFBV solver CoqQFBV based on Figure 1
as follows. We write an OCaml parser to translate a text file in the SMT-LIB
format to an SMT QFBV query in our formal syntax. The query is sent to
the verified OCaml program for bit blasting. We then add an OCaml pro-
gram to transform the output SAT query to a text file in the DIMACS format.
The 2020 SAT Competition winner Kissat [5] is used to check the satisfiabil-
ity of the SAT query. If the SAT solver reports UNSAT with a certificate in
the DRAT format [31], the certificate is sent to the verified certificate checker
GratChk [16] for validation. Certificate checkers for SAT solvers use much sim-
pler algorithms than certificate checkers for SMT solvers. They are hence easier
to build and prove correct. The correctness of GratChk is in fact verified by the
proof assistant Isabelle [22]. We need not trust the certificate checker either.

We ran two experiments to evaluate our certified SMT QFBV solver. The
first experiment is the QFBV division of the single query track in the 2020
SMT Competition [2]. The second experiment consists of verification problems
from various assembly implementations for linear field arithmetic in cryptogra-
phy libraries such as OpenSSL [30], RELIC [1], and BLST [29]. We compare
CoqQFBV against three SMT QFBV solvers: CVC4 [4] with an LFSC cer-
tificate checker [27], the 2020 SMT QFBV division winner Bitwuzla [20],
and the 2019 SMT QFBV division winner Boolector [21]. Bitwuzla and
Boolector are designed for efficiency without certification. CVC4 provides an
LFSC certificate checker implemented in C [26]. The certificate checker can vali-
date certificates from different theories but is itself not verified. All experiments
were run on a Linux machine with a 3.20GHz CPU and 1TB memory.1

8.1 SMT QFBV Competition

The first experiment is running our certified solver CoqQFBV on tasks from
the QFBV division of the 2020 SMT Competition. We set 60GB memory limit
and 20 minutes timeout for each task as in the competition. A task solves a single
SMT-LIB file sequentially. The SMT QFBV division contains 6861 files in the
SMT-LIB format. All files are marked with unsat, sat, or unknown indicating
expected query results. To save running time, we ran 10 tasks concurrently. The
experimental results are summarized in Table 1.

In the table, the column NSC indicates the number of solved tasks with
certification. OSC is the number of timeouts. ESC shows the number of unsolved
tasks due to tool errors. TSC is the average time for solved tasks. CoqQFBV
solves 6087 (88.72%) and CVC4 with its certificate checker solves 3840 (55.97%)
with certification. We observe three stack overflow errors during bit blasting in
CoqQFBV. These errors are induced by deep recursion. Among 328 errors from
CVC4, 249 are segmentation faults raised by the LFSC certificate checker.

1 CoqQFBV is available at https://github.com/fmlab-iis/coq-qfbv.git.

https://github.com/fmlab-iis/coq-qfbv.git
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Table 1: Experimental Results on the 2020 SMT QFBV Division
Tool NSC OSC ESC TSC NS OS ES TS

CoqQFBV 6087 (88.72%) 771 3 119.69 6169 (89.91%) 689 3 81.74
CVC4 3840 (55.97%) 2693 328 74.63 4255 (62.02%) 2544 62 56.87

Bitwuzla - - - - - 6739 (98.22%) 122 0 16.09
Boolector - - - - - 6719 (97.93%) 142 0 15.44

Table 2: Experimental Results on the 2020 SMT QFBV Division by Categories
Tool NSC TSC PSU NS TS

4238 unsat tasks

CoqQFBV 3838 (90.56%) 146.72 291.35 MB 3920 (92.50%) 86.51
CVC4 1762 (41.58%) 86.68 266.61 MB 2177 (51.37%) 49.68

Bitwuzla - - - - 4188 (98.82%) 12.75
Boolector - - - - 4180 (98.63%) 11.72

2553 sat tasks

CoqQFBV - - - - 2242 (87.82%) 73.26
CVC4 - - - - 2078 (81.39%) 64.41

Bitwuzla - - - - 2524 (98.86%) 21.08
Boolector - - - - 2516 (98.55%) 21.31

70 unknown tasks

CoqQFBV 5 (7.14%) 173.17 203.52 MB 7 (10.00%) 128.26
CVC4 - - - - 0 (0.00%) -

Bitwuzla - - - - 27 (38.57%) 66.36
Boolector - - - - 23 (32.86%) 48.58

The same table also compares against efficient but uncertified solvers. To
evaluate the overhead from certificate checking, the two certified solvers Coq-
QFBV and CVC4 still generate certificates but do not validate them. The
column NS gives the number of solved tasks without certification. OS is the
number of timeouts. ES indicates the number of errors, and TS is the average
time for solved tasks. Our certified solver CoqQFBV finishes 6169 (89.91%)
tasks. The CVC4 solver finishes 4255 (62.02%) tasks. CoqQFBV and CVC4
solve 82(= 6169 − 6087) and 415(= 4255 − 3840) more tasks without certifi-
cation respectively. Since our bit blasting algorithm is verified for all inputs,
CoqQFBV does not certify bit blasting on each query and hence induces less
overhead. The 2020 and 2019 SMT QFBV division winners Bitwuzla and
Boolector finish 6739 (98.22%) and 6719 (97.93%) tasks without certification
respectively. CoqQFBV solves about 10% less tasks with certification than the
2020 track winner Bitwuzla without certification. It also performs significantly
better than CVC4 with a general SMT certificate checker.

Table 2 compares the four solvers by tasks from the three expected query re-
sults. Among the 4238 unsat tasks, CoqQFBV and CVC4 give certified answers
to 3838 (90.56%) and 1762 (41.58%) of them respectively. The column PSU gives
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the average size of certificates. Efficient solvers Bitwuzla and Boolector give
4188 (98.82%) and 4180 (98.63%) uncertified answers respectively.

Among the 2553 sat tasks, Bitwuzla and Boolector finish 2524 (98.86%)
and 2516 (98.55%) of them respectively. CoqQFBV and CVC4 solve only 2242
(87.82%) and 2078 (81.39%) sat tasks respectively. For the 70 tasks marked
unknown, Bitwuzla and Boolector respectively answer 27 (38.57%) and 23
(32.86%) of them without certification. Our certified SMT QFBV solver finds
two sat and five unsat tasks. Answers to the five unsat tasks are all certified.
CVC4 with its certificate checker fails to solve any unknown task. For the bench-
marks from the 2020 SMT QFBV division, our certified solver CoqQFBV ap-
pears to be more scalable than CVC4 with its general SMT certificate checker.

Table 3: Average Time for CoqQFBV Components
Task TBB TSAT TCert

unsat 41.84 49.92 73.51
sat 37.08 62.09 -

unknown 32.34 121.99 62.86

Table 3 further decomposes the time spent on different components in Coq-
QFBV. The column TBB gives the average time for our verified OCaml bit
blasting program; TSAT gives the average time used by the SAT solver Kissat;
and TCert contains the average time for the certificate checker GratChk. For
the tasks in the QFBV division, the time for SAT solving and certificate check-
ing are comparable. In comparison, the OCaml bit blasting program seems to
take an unexpectedly large amount of time and hence can still be improved.

8.2 Linear Field Arithmetic in Cryptography

In this section, we evaluate our certified SMTQFBV solver on benchmarks from
real-world assembly implementations in various cryptography libraries such as
OpenSSL [30], RELIC [1], and BLST [29]. In elliptic curve cryptography, arith-
metic operations over large finite fields are needed. A field element is typically
represented by hundreds of bits. A field arithmetic operation takes two field ele-
ments and returns a field element as the result. In the signature scheme Ed25519
used in OpenSSH, for instance, a field element belongs to the residue system
modulo the prime number 2255− 19. Field sum of two field elements is obtained
by the arithmetic sum modulo 2255− 19. Commodity processors however do not
support arithmetic instructions with operands in hundreds of bits natively. Field
arithmetic has to be implemented by 32- or 64-bit instructions. The functional
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Table 4: Experimental Results on Cryptographic Assembly Program Verification
Tool NSC TSC PSU NS TS

CoqQFBV 93 (96.88%) 121.42 168.45 MB 93 (96.88%) 68.96
CVC4 19 (19.79%) 6.66 267.92 MB 46 (47.92%) 40.16

Bitwuzla - - - - 88 (91.67%) 16.07
Boolector - - - - 96 (100.00%) 18.25

specification of the field addition used in Ed25519 may look as follows.

{
∑3

i=0 ai × 264×i < 2255 − 19 ∧
∑3

i=0 bi × 264×i < 2255 − 19}
x25519 fe64 add(r0, r1, r2, r3, a0, a1, a2, a3, b0, b1, b2, b3)

∑3
i=0 ri × 264×i ≡

∑3
i=0 ai × 264×i +

∑3
i=0 bi × 264×i(mod 2255 − 19)

∧∑3
i=0 ri × 264×i < 2255 − 19


Let ai, bi, ci be 64-bit variables (registers) for 0 ≤ i ≤ 3. The specification
says that the output field element represented by ri’s computed by the program
x25519 fe64 add is the field arithmetic sum of the input elements represented
by ai’s and bi’s. In finite field arithmetic programs, over- or under-flow in assem-
bly instructions lead to incorrect results, and bit-accurate program verification is
required. We obtain 46 implementations and generate 96 SMT QFBV queries
from verification conditions in order to evaluate our certified solver in this ex-
periment.

Table 4 shows the verification results with the same memory and time limits
in the 2020 SMT Competition. All SMT QFBV queries are expected to be
unsatisfiable. Boolector successfully solves all queries (100%) without certifi-
cation. The 2020 QFBV track winner Bitwuzla finishes 88 queries (91.67%)
without certification. Surprisingly, CoqQFBV gives certified answers to 93
queries (96.88%). The verified SAT certificate checker GratChk used in Coq-
QFBV successfully validates all certificates for the real-world cryptographic pro-
gram verification problems. In comparison, CVC4 solves 46 queries (47.92%)
but certifies only 19 (19.79%). The CVC4 certificate checker raises segmenta-
tion faults on the 27 (= 46−19) solved but uncertified queries. These certificates
are perhaps too complicated to be validated by the unverified LFSC certificate
checker. For the SMTQFBV queries from real-world program verification prob-
lems, our certified solver CoqQFBV seems to perform slightly better than the
efficient but uncertified SMT QFBV solver Bitwuzla. Our certified solver is
probably scalable enough for certain bit-accurate program verification problems.

9 Conclusion

We combine algorithm design with interactive theorem proving to build a scal-
able certified SMT QFBV solver CoqQFBV in this work. Our certified solver
employs a verified OCaml bit blasting program and the verified certificate
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checker GratChk to improve the confidence in SMT QFBV query results.
Experiments on the QFBV division of the 2020 SMT Competition and real-
world cryptographic program verification suggest that CoqQFBV is useful.

For future work, we plan to specify and verify more heuristics to further opti-
mize CoqQFBV. Particularly, cryptographic program verification requires more
sophisticated range checks. More verified bit blasting algorithms for such checks
will undoubtedly improve the confidence of bit-accurate program verification.
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